Obeldesivir Reduced SARS-CoV-2 Infectious Titers in the BIRCH Phase 3 Clinical Trial

Lauren Rodriguez¹, Anca Streinu-Cercel², Juan Maria Gonzalez Del Castillo³, Yiannis Koullias¹, Afsaneh Mozaffarian¹, Kim Etchevers¹, Shuguang Chen¹, Robert H Hyland¹, Joe Llewellyn¹, Romas Geleziunas¹, Leon F Fouche⁴, Shan-Chwen Chang⁵, Antonella Castagna⁶, Charlotte Hedskog¹

¹Gilead Sciences, Inc., Foster City, CA, USA; ²Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; ³Emergency Department, Hospital Clínico Universitario San Carlos, Madrid, Spain; ⁴Limpopo Clinical Research Initiative, Thabazimbi, South Africa; ⁵National Taiwan University College of Medicine, Taipei, Taiwan; ⁶Infectious Diseases Clinic, Vita-Salute San Raffaele University, Milan, Italy

Lauren Rodriguez, Yiannis Koullias, Afsaneh Mozaffarian, Kim Etchevers, Shuguang Chen, Robert H Hyland, Joe Llewellyn, Romas Geleziunas, and Charlotte Hedskog are employees of and may own stock in Gilead Sciences, Inc. Anca Streinu-Cercel received grant or research support and honoraria from Gilead Sciences, Inc. Antonella Castagna served as an advisor or consultant for Bristol Myers Squibb, Gilead Sciences, Inc., Janssen, Merck Sharp & Dohme, and ViiV Healthcare. Juan Maria Gonzalez Del Castillo, Leon F Fouche, and Shan-Chwen Chang have no conflicts to report.

The BIRCH Study

A Phase 3, Randomized, Double-blind, Placebo-controlled Study to Evaluate the Efficacy and Safety of ODV for the Treatment of COVID-19 in Participants With Risk Factors for Severe Disease

^aAnalysis set included participants who were randomized, received ≥1 dose of study drug, and were SARS-CoV-2 positive at baseline as confirmed by RT-PCR at the central laboratory.

BID, twice daily; ODV, obeldesivir; RT-PCR, reverse transcriptase-polymerase chain reaction.

Full Analysis Positive Set^a

	ODV (n = 211)	Placebo (n = 207)	Total (n = 418)
Age, years, median (range)	57 (20-89)	55 (18-87)	56 (18-89)
Randomization stratum: duration of symptoms, n (%)			
≤3 days	162 (77)	164 (79)	326 (78)
COVID-19 vaccination status, n (%)			
Ever	124 (59)	119 (57)	243 (58)
Duration of COVID-19 symptoms, days, mean (SD)	3 (1)	2 (1)	2 (<1)
SARS-CoV-2 antibody serostatus, n (%) ^b			
Overall positive	192 (91)	191 (92)	383 (92)
SARS-CoV-2 viral RNA copy number, n	204	203	407
Log ₁₀ copies/mL, mean (SD)°	6.4 (1.4)	6.4 (1.4)	6.4 (1.4)
≥10 ⁶ copies/mL, n (%)	137 (67)	130 (64)	267 (66)

^aFull analysis positive set included all participants who were randomized, received ≥1 dose of study drug, and had central laboratory–positive SARS-CoV-2 RT-PCR at baseline. ^bSerostatus was defined as positive when anti-spike antibody or anti-nucleocapsid antibody was positive and was defined as negative when both were negative. Serostatus percentages do not include those with missing values.

eResult of "No SARS-CoV-2 detected" was imputed as 746.5 copies/mL (2.87 log₁₀ copies/mL); "<2228 copies/mL]. was imputed as 1114 copies/mL (3.05 log₁₀ copies/mL).

ODV, obeldesivir; RT-PCR, reverse transcriptase-polymerase chain reaction.

SARS-CoV-2 Viral RNA Copy Number Versus Infectious Viral Titer

RNA copy number (RT-qPCR):

detects total viral RNA, including residual (noninfectious) viral RNA¹

Infectious titer (plaque-forming assay):

detects replication-competent (infectious) virus

Plaque-forming assay

- Inoculation of Vero E6 cells with nasal swab sample serial dilutions
- Incubation for 96 hours with a carboxymethylcellulose overlay
- Staining of cell monolayer
- Quantification of PFU

ODV, obeldesivir; **PFU**, plaque-forming unit; **RT-qPCR**, reverse transcriptase–quantitative polymerase chain reaction. 1. Puhach O, et al. *Nat Rev Microbiol.* 2023;21(3):147-161.

Change From Baseline in SARS-CoV-2 Nasal Swab Viral RNA Copy Number

Virology Analysis Set^a

^aVirology analysis set included participants who were randomized, received ≥1 dose of study drug, and had a baseline SARS-CoV-2 viral RNA copy number ≥LLOQ. Data are plotted as LS mean ± 95% CI. LS mean (SE), 95% CI, and *P* value were from MMRM with baseline viral RNA copy number and randomization strata as covariates. LLOQ, lower limit of quantitation; LS, least squares; MMRM, mixed-effects model repeated measures; ODV, obeldesivir.

Nasal Swab SARS-CoV-2 Infectious Viral Titer Assessment

Testing criteria

Viral RNA copy number ≥10⁶ copies/mL at any visit

Participants with ≥200 PFU/mL at baseline had additional testing on Day 3 or Day 5, independent of viral RNA copy number

If Day 3 or Day 5 samples were available, the Day 10 sample was also tested, if available

aVirology analysis set included participants who were randomized, received ≥1 dose of study drug, and had a baseline SARS-CoV-2 viral RNA copy number ≥LLOQ. LLOQ, lower limit of quantification; PFU, plaque-forming unit.

Change From Baseline in SARS-CoV-2 Infectious Viral Titer

Virology Analysis Set^a

^aVirology analysis set included participants who were randomized, received ≥1 dose of study drug, and had a baseline SARS-CoV-2 viral RNA copy number ≥LLOQ. Data are plotted as LS mean ± 95% CI. LS mean (SE), 95% CI, and *P* value were from MMRM with baseline infectious viral titer and stratification factors as covariates. Only 1 participant had a result at Day 15, which was excluded from this analysis. LLOQ, lower limit of guantitation; LS, least squares; MMRM, mixed-effects model repeated measures; ODV, obeldesivir; PFU, plaque-forming unit.

Participants With Negative SARS-CoV-2 Infectious Viral Titer

Virology Analysis Set^a

^aVirology analysis set included participants who were randomized into the study, received ≥1 dose of study drug, and had a baseline SARS-CoV-2 viral RNA copy number ≥LLOQ. * nominal *P* <0.01. ** nominal *P* <0.001. *P* value was from the Fisher's exact test. Baseline was the last available value recorded on or prior to the first dosing date of study drug. LLOQ, lower limit of quantitation; ODV, obeldesivir; PFU, plaque-forming unit.

Conclusions

- ODV reduced SARS-CoV-2 nasal swab viral RNA copy number compared to placebo on Day 5
- ODV reduced SARS-CoV-2 nasal swab infectious viral titer compared to placebo on Days 3 and 5
- ODV increased the proportion of participants with negative SARS-CoV-2 nasal swab infectious viral titer compared to placebo on Days 3 and 5
- Overall, ODV treatment reduced nasal swab viral RNA copy number and infectious titer, demonstrating its ability to inhibit SARS-CoV-2 replication in adults with risk factors for developing severe COVID-19

Visit our poster presentation for more results from the BIRCH study

Title: Obeldesivir for the Treatment of COVID-19 in People With Risk Factors for Progression to Severe Disease: The BIRCH Study Poster Session: COVID-19: Treatment

Date: Saturday, October 19 Time: 12:15 to 1:30 pm Location: Hall J & K Poster: P-2026 Presenter: Anca Streinu-Cercel

- We extend our thanks to the participants, their loved ones, and all participating investigators and site staff
- This study was funded by Gilead Sciences, Inc.
- All authors contributed to and approved the presentation; medical writing and editorial support were
 provided by Catherine Bautista, PhD, of Lumanity Communications Inc., and were funded by
 Gilead Sciences, Inc.
- Correspondence: Lauren Rodriguez

Copies of this presentation obtained through QR (Quick Response) are for personal use only and may not be reproduced without written permission of the authors

